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Clifford Fields and the Relativistic Equation of
the Nucleon
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A relativistic equation for free fields which take their values in the Clifford
algebra associated with the Minkowski metric is shown to be interpretable as the
equation of the nucleon. The internal symmetry group SU(2) arises naturally
from the associative algebra structure of the representation space. The latter
structure can be used to construct coupling terms consistent with the
transformation properties of the interacting fields; in particular, it allows the
familiar couplings of the nucleon field with the electromagnetic field and with
the p -meson field.

1. INTRODUCTION

Let # denote the complex Clifford algebra associated with the Minkow-

ski metric, i.e., the abstract 16-dimensional associative complex algebra with

unit with four generators e1, e2, e3, e4 and relations

ei Ú eh 1 eh Ú ei 5 2 h ih (i, h 5 1, 2, 3, 4) (1)

where Ú denotes the product, and the numerical matrix ( h ih) [ diag( 2 1, 2 1,
2 1, 1) represents the components of the metric in canonical form.

In a previous paper (Cantoni, 1997), two distinct representations of the

Lie algebra so(3,1) carried by # were considered, and it was remarked that

both satisfy the conditions which guarantee the invariance of a field equation

of the form

eh Ú
- f
- xh 1 k f 5 0 (2)
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with respect to the proper Lorentz group +0. In equation (2) f is a #-valued

function of the space-time Cartesian coordinates (x1, x2, x3, x4) and k is

a constant.
Thus equation (2) admits two distinct interpretations as a relativistic

equation, depending on the choice of the representation.

If the field f is transformed according to the representation of +0

generated by the representation of the Lie algebra so(3,1), which was

denoted by ª adº (adjoint) in Cantoni (1997), it can be interpreted as an

inhomogeneous differential form and will be called a KaÈ hler field. In this
case, as a relativistic equation, equation (2) is identical with the Ka

È
hler

equation (Talebaoui, 1995), which represents bosons and decomposes into

four distinct equations of Duffin±Kemmer type (Cantoni, 1996).

If, on the other hand, the field f is transformed according to the

two-valued representation of +0 generated by the representation of so(3,1),

which was denoted by ª regº (regular), it will be called a Clifford field,
and equation (2), as a relativistic equation, represents fermions and

decomposes into four equations equivalent to the Dirac equation (Tale-

baoui, 1995).

In this paper we shall be exclusively concerned with the latter

interpretation of equation (2). Thus the fields f will be Clifford fields,
assumed to transform according to the two-valued representation of +0

just mentioned, extended to the entire homogeneous Lorentz group + by

taking the operators of left multiplication by 6 e4 and by 6 e1 Ú e2 Ú e3 as

representatives of the space reflection and time reflection, respectively.

As in Cantoni (1997), the equation itself will be referred to as the

Clifford equation.
We shall show that, by means of the Clifford algebra structure of

the representation space #, the decomposition of the Clifford equation

with respect to the homogeneous Lorentz group can be made in two steps,

the first of which is natural, while the second is not. The first step splits

the 16-component Clifford equation into two mutually equivalent eight-

component reduced Clifford equations. The second step (further reduction
of the reduced Clifford equations into pairs of Dirac equations) is carried

out subordinately to the choice of an additional structure.

Each reduced Clifford equation has symmetries allowing its interpreta-

tion as the relativistic equation of the free nucleon. While the symmetry

with respect to the PoincareÂgroup was imposed by construction, the

internal symmetry group SU(2) arises naturally from the associative algebra
structure of the representation space. The latter structure is used to construct

the simplest coupling of a Clifford field to an unspecified Ka
È
hler field,

and to express the familiar interaction Lagrangians of the nucleon field

with the electromagnetic field and with the p -meson field.
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2. THE REGULAR REPRESENTATION OF THE
HOMOGENEOUS LORENTZ GROUP AND ITS
NATURAL REDUCTION

Setting eih [ ei Ú eh (for i, h ranging from 1 to 4 and i Þ h), with the

help of the relations e a b Ú e a b 5 2 1 and e a 4 Ú e a 4 5 1 (for a and b ranging

from 1 to 3), the representation ª regº of the real Lie algebra so(3,1) on the

(real or complexified) Clifford algebra #, described in Cantoni (1997), can

be readily exponentiated. One gets the two-valued representation of the homo-
geneous proper Lorentz group +0 in which the one-parameter subgroups of

space rotations and boosts generated by the elements 1±2 e a b and 1±2 e a 4, respec-

tively, are represented by the one-parameter subgroups of operators of left-

multiplication

1 cos
q
2

1 e a b sin
q
2 2 Ú (3)

and

1 cosh
j
2

1 e a 4 sinh
j
2 2 Ú (4)

Setting p [ e4 and t [ e1 Ú e2 Ú e3, the operators 7 p Ú and 7 t Ú extend the

representation of +0 to a two-valued representation of the entire homogeneous

Lorentz group +, with 7 p Ú and 7 t Ú corresponding to the space reflection
and time reflection, respectively. With this extension of the representation,

the Clifford equation satisfies all the conditions of invariance with respect

to + (Naimark, 1962, Ch. 4, §3, n. 1).

We now consider the complex Clifford algebra #. The linear combina-

tions of products of the generators with real coefficients will be called real
elements of #.

Since all the representatives of +0 are even real elements (i.e., they

belong to the subspace #0 generated by all the elements of degree 0, 2, or

4), the even subspace #0 and the odd subspace #1 (generated by all the

elements of degree 1 or 3) are invariant under +0.

Similarly, since the operator e5 Ú (with e5 [ e1 Ú e2 Ú e3 Ú e4) has eigenvalues
7 i and commutes with the even elements of #, the subspaces #+ and # 2

of # constituted of eigenvectors of e5 Ú belonging to the eigenvalues i and

2 i, respectively, are invariant under +0.

Hence the four subspaces # 1
0 [ #0 ù #+, # 2

0 [ #0 ù # 2 , # 1
1 [

#1 ù #+, and # 2
I [ #1 ù # 2 are invariant under +0. On the other hand,

since p and t are odd and anticommute with e5, the subspaces G [ # 1
0 1

# 2
1 and G 8 [ # 2

0 1 # 1
1 of # are invariant under +.
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The subspaces G and G 8 are also invariant with respect to the four

operators eh Ú of left multiplication by eh, so that they are invariant with

respect to the differential operator of equation (2). Therefore the Clifford
equation decomposes into two equations of the same form, whose fields take

their values in G and in G 8, respectively. As we shall see, the two reduced
Clifford equations so obtained turn out to be equivalent.

3. FURTHER REDUCTION OF THE CLIFFORD EQUATION

The above decomposition of the representation of + and of the original

equation is natural with respect to # in the sense that it is entirely determined

by the Clifford algebra structure of the representation space.

We shall now study a distinguished class of further decompositions of
the reduced equations. The decompositions of this class, which will be called

canonical, are adapted to the Clifford algebra structure of the representation

space in the sense that their invariant subspaces are orthogonal minimal left

ideals of #. The canonical decompositions are in one-to-one correspondence

with a special class of elements of #, which constitute a homogeneous space

of Sl(2, C) under a natural action of this group. The restriction of this
action to SU(2) is related to the ª internalº symmetry group of the reduced

Clifford equations.

We start by noting that the natural decomposition of # considered above

can be conveniently described in terms of the two elements p5 [ 1±2 (1 2 ie5)

and q5 [ 1±2 (1 1 ie5), which are complementary orthogonal idempotents of

# (i.e., p5 1 q5 5 1, p5 Ú p5 5 p5, q5 Ú q5 5 q5, p5 Ú q5 5 q5 Ú p5 5 0).
It is easily checked that the operators Ú p5 and Ú q5 of right multiplication

by these elements are projection operators on the subspaces G and G 8,
respectively.

In order to obtain a further decomposition of G (or G 8) into invariant

subspaces, which turn out to be minimal left ideals of #, we choose any real
element e of # of degree 2 and such that e Ú e 5 2 1. Setting

pe [ 1±2 (1 2 ie), qe [ 1±2 (1 1 ie)

we get the following set of four complementary orthogonal primitive

idempotents:

ae [ p5 Ú qe 5 1±4 (1 2 ie5)(1 1 ie)

be [ p5 Ú pe 5 1±4 (1 2 ie
5)(1 2 ie) (5)

a8e [ q5 Ú pe 5 1±4 (1 1 ie
5)(1 2 ie)

b8e [ q5 Ú qe 5 1±4 (1 1 ie
5)(1 1 ie)
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The minimal left ideals determined by the projection operators

Ú ae and Ú be span G . In a similar way, Ú a8e and Ú b8e are related to G 8.
Consider now the special case e 5 e12. The corresponding elements (5)

will be written a12, b12, a812, b812. Since the element a12 is an eigenvector of

the operator H3 [ 1±2 ie12 Ú with eigenvalue 1/2 and of the operator F3 [ 1±2
ie34 Ú with eigenvalue 2 i/2, under the action of +0 it generates a two-

dimensional invariant subspace of # 1
0 carrying a representation of +0 of type

(k0, c) 5 (1/2, 2 3/2) in Naimark’ s classification (Naimark, 1962, Ch. 3, §2,

n. 3, p. 98), and under the action of + it generates a four-dimensional invariant
subspace of G carrying a representation equivalent to the representation of

+ on Dirac spinors. This invariant subspace coincides with the minimal left

ideal associated with a12.

Similarly, since b12 is an eigenvector of H3 with eigenvalue 2 1/2 and

of F3 with eigenvalue i/2, under the action of +0 it generates an invariant

subspace of # 1
0 carrying a representation of +0 of the same type as above,

and again, under the action of +, it generates an invariant subspace of G
carrying a representation of + equivalent to the Dirac representation. This

invariant subspace coincides with the minimal left ideal associated with b12.

The two invariant subspaces of G arising from this decomposition are

invariant under the differential operator of equation (2), so that the reduced
Clifford equation on G decomposes into two equations, equivalent to the

Dirac equation. Replacing a12 and b12 by a812 and b812, one gets a similar

decomposition of G 8.
The mutual equivalence of the two reduced Clifford equations is exhib-

ited by the operator of right-multiplication

Ú e4: f ® f Ú e4

which commutes with the representatives of Sl(2, C), is its own inverse, and

maps the G -valued solutions of (2) onto the G 8-valued solutions. Thus from

now on we shall only need to be concerned with one of the reduced equations,

say with the equation on G .

We now show that there is a one-to-one correspondence between the
canonical decompositions (5) and the elements e of # with the properties of

being real, of degree 2, and such that e Ú e 5 2 1. In fact, given the decomposition

(5), let f be an element with the same properties and giving rise to the same

decomposition, so that ae 5 af. From this equation one gets the relation

(1 2 ie
5)(e 2 f ) 5 0, so that e 2 f must belong to G 8, and therefore, being

even, to #2
0 . But # 2

0 is constituted of eigenvectors of e5 Ú , and e5 Ú has no real
eigenvector (since it transforms real vectors into real vectors while its eigenvalues

are pure imaginary); therefore e 2 f 5 0 and f coincides with e. Thus the set

$ of canonical decompositions is identified with the set of all the real elements

e of # of degree 2 and such that eÚ e 5 2 1.



1726 Cantoni and Semplice

4. THE ACTION OF Sl(2, C) ON THE SET OF CANONICAL
DECOMPOSITIONS

Let s be a representative of an element of Sl(2, C) in the regular

representation. If e is an element of $, the element

e8 5 s Ú e Ú s 2 1 (6)

also belongs to $, since s is a product of elements of the form (3) or (4).

Therefore $ is invariant under the adjoint action of Sl(2, C) on #, which is
given by

a ® s Ú a Ú s 2 1 (a e #) (7)

We now prove that $ is a single orbit under this action by showing that any

element e P $ can be transformed into the particular element e12 considered

in the previous section.
To see this, let us recall that under the adjoint action of +, the Clifford

algebra # can be identified with the exterior algebra of Minkowski space,

with the elements of degree 2 corresponding to the exterior 2-forms. Since

an exterior 2-form has the transformation properties of an electromagnetic

tensor, for the element e 5 a ihe
ih we can expressively introduce electromag-

netic notations by setting

( a ih) [ 1
0 H3 2 H2 E1

2 H3 0 H1 E2

H2 2 H1 0 E3

2 E1 2 E2 2 E3 0 2
with these notations the assumption e Ú e 5 2 1 entails the two relations

E 2 2 H 2 5 2 1 (8)

and

E ? H 5 0 (9)

where E 2 and H 2 denote the squared moduli of the ª electric vectorº and of

the ª magnetic vector,º and E ? H denotes their Euclidian scalar product. These

relations are Lorentz-invariant, and due to (9) it is possible, with a spatial
rotation, to go to a Lorentz frame where H1 5 H2 5 0, E2 5 E3 5 0, so

that the representative matrix is reduced to (0, H, 0, E) on the first row, (0,

2 H, 0, 2 E) on the first column, and zero elsewhere. Subsequently, setting

E 5 b H [where | b | , 1 on account of (8)], with a boost with velocity b c
along the second axis one can reach a Lorentz frame where E vanishes, while
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the new value of H is equal to 1 on account of (8), and the representative

matrix of our 2-form is reduced to the matrix ( a ih) corresponding to the

element e12. Since the action of an element of + on the exterior forms
identified with # is the same as the action of a pair of opposite elements of

Sl(2, C) in the adjoint representation, the given element e can indeed be

transformed into e12 as stated.

If s is a representative of an element of Sl(2, C) such that s Ú e Ú s 2 1

5 e12, the transformation a ® s 2 1 Ú a Ú s applied to the 16 elements of

the basis

{1, e1, e2, . . . , e12, e13, . . . , e123, e124, . . . , e1234}

(e12 [ e1 Ú e2, e123 [ e1 Ú e2 Ú e3, etc.) (10)

gives a new basis of the same kind, with e equal to the element e812 [ s 2 1 Ú
e12 Ú s of the new basis. Thus, dropping the prime, we see that any canonical

decomposition can be associated with the element e12 of some appropriate
basis.

5. THE LAGRANGIAN AND ITS EXTERNAL SYMMETRIES

Consider the basis (10) of #, and denote by %h (h 5 1, 2, 3, 4) the

representative 16 3 16 matrix of the linear operators eh Ú on # in this basis.
Since e4 Ú e4 5 1, %4 is nonsingular, and it is readily checked that it is real

and symmetric, so that it can be used to define a scalar product in # by setting

( g , f ) [ G t%4 F ( f , g P #) (11)

where F and G are the column matrices of the components of f and g ,

respectively, with the notation M for the complex conjugate and Mt for the

transpose of any matrix M. The scalar product (11) is linear with respect to

f , antilinear with respect to g , and is not positive-definite.
The one-dimensional subgroups (3) and (4) are represented by the

matrices

cos
q
2

? I 1 sin
q
2

? % a %b

and

cosh
j
2
? I 1 sinh

j
2
? % a %4

where I denotes the unit 16 3 16 matrix. Using the fact that the matrices
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%a ( a 5 1, 2, 3) turn out to be antisymmetric, and that the %h (h 5 1, 2, 3,

4) satisfy the same anticommutation relations as the operators eh Ú of # that

they represent, one can check that the scalar product (11) is invariant with
respect to the action of the operators (3) and (4), and therefore with respect

to the regular action of Sl(2, C) on #. It is also invariant with respect to the

action of the operator e4 Ú , represented by the matrix %4.

Denoting now by F the column matrix of the components of a Clifford

field or of a reduced Clifford field, the function

L 5
i

2
{( F , %h - h F ) 2 (%h - h F , F )} 1 ik( F , F )

or, in basis-independent form,

L 5
i

2
{( f , eh Ú - h f ) 2 (eh Ú - h f , f )} 1 ik( f , f ) (12)

is a Lagrangian for the Clifford equation and for the reduced Clifford equation.

The translational invariance of the action functional and its invariance with

respect to the regular action of Sl(2, C) and e4 Ú on # [due to the invariance

properties of the scalar product (11)] imply that the Clifford equation and

the reduced Clifford equation are invariant with respect to the associated

two-valued action of the orthochronous PoincareÂgroup, as we already know
from our original construction of the equation. This means that for any

solution f (x) of the equation and for any PoincareÂtransformation x ® L x
1 a (where a and L denote the translation vector and the homogeneous part

of the transformation, respectively) the field transformation

f (x) ® f 8(x) [ s L Ú f ( L 2 1(x 2 a)) (13)

gives rise to a new solution of the equation. In (13) s L Ú denotes the

representative of either element of Sl(2, C) associated with L in the regu-

lar representation.

We shall now see that besides these external symmetries, related to
space-time transformations, the Lagrangian + possesses an internal symmetry

group isomorphic to SU(2).

6. THE INTERNAL SYMMETRIES

The restriction of the regular action of Sl(2, C) on # to the subgroup

SU(2) is generated by the one-parameter subgroups of linear transforma-

tions (3):
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1 cos
q
2

1 e a b sin
q
2 2 Ú ( a , b 5 1, 2, 3; a , b ) (14)

This external (left) action of the generic element u P Sl(2, C) on # has the form

a ® u Ú a (a P #) (15)

where u is a product of elements of the form (14).

We now define the following internal (left) action of SU(2) on Clif-
ford fields:

u: f (x) ® f 8(x) [ f (x) Ú u 2 1 (16)

with the same meaning of u as above. [Notice that, in contrast with the

transformation (13), this transformation does not affect the space-time coordi-

nates. Notice also that, since Ú u 2 1 is an operator of right multiplication in

#, it does not preserve the subspaces arising from the canonical decomposi-

tions of the fields, which are left ideals.]
If we denote by !

Ã
the matrix representation of the generic operator of

right multiplication Ú a in #, the action (16) is described by

F ® F 8 [ 8
Ã

2 1 F (17)

where 8
Ã

denotes the matrix of the transformation Ú u and the dependence

of F on x is understood. In particular, for the generating elements

u 5 cos
q
2

1 e a b sin
q
2

( a , b 5 1, 2, 3; a Þ b ) (18)

we have

8
Ã

5 cos
q
2

? I 1 sin
q
2

? %
Ã

b %
Ã

a

8
Ã

2 1 5 cos
q
2

? I 2 sin
q
2

? %
Ã

b %
Ã

a

Since the matrices %
Ã

1, %
Ã

2, %
Ã

3 (like the matrices %1, %2, %3) are skew-symmetric

and anticommuting, the matrices %
Ã

b %
Ã

a are also skew-symmetric, so that one

has 8
Ã

t 5 8
Ã

2 1 and the matrices 8
Ã
, which are real, are orthogonal. Conse-

quently, since the matrices 8
Ã

commute with %4, the scalar product (11) is

invariant under the action (16) of SU(2) on the fields:

( g Ú u 2 1, f Ú u 2 1) 5 G t(8
Ã

2 1)t %48
Ã

2 1 F

5 G t8
Ã
%48

Ã
2 1 F 5 G t%48

Ã
8
Ã

2 1 F 5 ( g , f ) (19)
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[Notice that, although the action (16) of SU(2) on the fields can be extended

to the whole group Sl(2, C), the scalar product (11) is not invariant with

respect to the action of the elements which do not belong to SU(2). In order
to get an Sl(2, C)-invariant scalar product under this action, one would have

to replace %4 by %
Ã

4 in the definition (11).]

The invariance of the scalar product under the internal action (16) entails

that SU(2) is a symmetry group of the Lagrangian (12). Since the elements

u P # associated with the elements u P SU(2) are even, and therefore

commute with p5 and q5 (see Section 3), the decomposition of the Clifford
fields into reduced Clifford fields via the projection operators Ú p5 and Ú q5

is preserved by the internal action, though the finer canonical decompositions

arising from the subsequent application of projection operators of the form

Ú p e and Ú q e are not.

If the reduced Clifford equation on G is interpreted as the relativistic

equation of the nucleon, and by means of the decomposition determined by
a selected element e P $ the components f P [ f Ú be and f N [ f Ú ae of

the generic field F are interpreted as proton states and neutron states, respec-

tively, the operator t 3 [ Ú ( 2 ie) acts as the isospin operator characterized

by the property of multiplying by 1 the proton states and by 2 1 the neutron

states. In fact one has

t 3 f P 5 t 3( f Ú be) 5 2 f Ú be Ú ie

5 2 f Ú 1±4(1 2 ie
5) Ú (1 2 ie) Ú ie

5 2 1±4 f Ú (1 2 ie
5) Ú (ie 2 1) 5 f Ú be 5 f P

and similarly

t 3 f N 5 t 3( f Ú ae) 5 2 f Ú ae 5 2 f N

Selecting e 5 e12 and setting t 1 5 Ú ie23 and t 2 5 Ú ie31, we see that the

operators t 1, t 2, and t 3 have the characteristic properties of the isospin

operators usually denoted by the same symbols t 1, t 2, t 3 in the literature

(see, e.g., Bogoliubov and Shirkov, 1959, §33.1; Roman, 1965, pp. 544±545;

Greiner and Mu
Ã
ller, 1993, p. 91). In fact, setting t + 5 1±2( t 1 1 it 2) and t 2 5

1±2( t 1 2 i t 2), we have t 2
1 5 0, t 2

2 5 0, t 3 5 t + t 2 2 t 2 t +, [ t 3, t +] 5 2 t +, and

[ t 3, t 2 ] 5 2 2 t 2 . In particular, t + transforms neutron fields into proton fields,

while t 2 acts conversely.

Since right translations commute with left ones, the SU(2) action is

Lorentz-invariant, as isospin is.

7. INTERACTIONS

The interaction with an external electromagnetic field with four-potentia l
-

A is described by equation (2) supplemented with an interaction term of the
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form 2 qAh eh Ú f Ú be, where q denotes the electric charge multiplied by a

factor depending on the system of units adopted:

eh Ú
- f
- xh 1 iqAh eh Ú f Ú be 1 k f 5 0 (20)

Setting k [ im , where m is a real constant interpreted as the rest mass of

the nucleon multiplied by 2 p c/h (c is the velocity of light, h is Planck’ s

constant), upon multiplication by be on the right equation (20) reduces to the

Dirac equation with minimal electromagnetic coupling on the proton

subspace:

ieh Ú 1 -
- xh 1 iqAh 2 f P 2 m f P 5 0

while upon multiplication by ae on the right, it reduces to equation (2) on
the neutron subspace:

ieh Ú
- f N

- xh 2 m f N 5 0

The interaction term of equation (20) can be derived from the Lagrangian

Lint 5 2 q( f Ú be, Ahe
h Ú f Ú be)

The presence of an external electromagnetic field introduces the preferred

decomposition e which establishes the distinction between proton and neu-
tron states.

If a hypothetical interaction of the Clifford field with an external Ka
È
hler

field C
K

is assumed to be described by an additional term of the form k C
K

Ú f

(where k is a coupling constant), no preferred decomposition occurs and the
resulting equation

eh Ú
- f
- xh 1 k C

K
Ú f 1 im f 5 0 (21)

has the same external and internal symmetries as the equation of the free

field. In fact, since the transformation law of a Ka
È
hler field under Sl(2, C)

is given by

C
K

(x) ® s L Ú C
K

( L 2 1(x 2 a)) Ú s 2 1
L

(with the notation of Section 5), while the field f transforms according to

(13), the interaction term kC
K

f is indeed a Clifford field (provided that, under
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a PoincareÂtransformation, the transformed product of the fields is defined

as the product of the transformed factors) and the interaction Lagrangian

Lint 5 k( f , C
K

Ú f )

has the appropriate invariance properties.

A different kind of coupling appears in the description of the interaction

of the nucleon field with the p -meson field within the present framework.

Besides the Clifford fields and the Ka
È
hler fields, consider fields of yet another

kind, still #-valued, but associated with the trivial action of Sl(2, C) (i.e.,

the action in which every element of the group acts as the identity operator

on #). If a1, a2, . . . , an are elements of #, and f1(x), f2(x), . . . , fn(x) are

scalar (or pseudoscalar) functions on Minkowski space-time, a typical field

of this kind, which will be called a #-valued field of scalar (or pseudoscalar )

type, is given by the #-valued function ( fi(x) ai , and transforms under the
PoincareÂtransformation x ® L x 1 a into the field ( fi ( L 2 1(x 2 a)) ai (with

a change of sign for improper transformations in the pseudoscalar case).

Obviously the #-valued fields of scalar (or pseudoscalar) type constitute a

representation of the PoincareÂgroup equivalent to the direct sum of 16 copies

of its representation on scalar (or pseudoscalar) fields.

Given three real pseudoscalar fields p 0 [ p 3, p 1, and p 2, let us construct
the #-valued field of pseudoscalar type p 5 i( p 1 e23 1 p 2 e31 1 p 3 e12). If

f is a Clifford field and g 5 is defined as the constant Ka
È
hler field with value

e5 (so that it transforms into itself under proper PoincareÂtransformations and

changes sign under improper transformations), the product

g 5 Ú f Ú p (22)

is a Clifford field (with the same definition as above of the action of a
PoincareÂtransformation on a product of fields). Recalling the definition of

the operators t a given in the previous section, the product (22) is identical

with g 5 Ú ( p a t a ( f ), and the function

Lint 5 q( f , g 5 Ú o p a t a ( f ))

(where q is the coupling constant) is the familiar interaction Lagrangian of

the nucleon field with the p -meson field (Bogoliubov and Shirkov, 1959, p.

411; Greiner and Mu
Ã
ller, 1993, p. 91). From its equivalent expression

Lint 5 q( f , g 5 Ú f Ú p ))

one sees that the interaction Lagrangian is invariant under the transformation
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(16) of the nucleon field f , provided that at the same time the meson field

p is subjected to the transformation

p ® u Ú p Ú u 2 1

8. CONCLUSIONS

Our analysis and interpretation of the reduced Clifford equation has

exhibited, for the nucleon, a relation between the external and internal symme-

try groups whose essential features will now be summarized in terms which

hint at a possible generalization.
We started from the following data:

x an associative algebra (now denoted generically by !);

x a map of the homogeneous Lorentz group into the invertible elements

of ! defining, via left-multiplication, a linear representation of the group on

! (multiple of an irreducible representation);

x a relativistic equation for the !-valued fields admitting a PoincareÂ-
invariant action.

Then the internal symmetry group presented itself as the group of inverti-

ble elements of ! which leave the action invariant when acting on the fields

by right-multiplication.

Finally, the algebraic structure of the representation space was exploited

to supplement the field equation with coupling terms compatible with the
transformation laws of the interacting fields under PoincareÂtransformations.

In the two cases of known physical relevance considered, the structure

required to define the coupling terms provided a decomposition of the fields

into irreducible components corresponding to particles with different charges.
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